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Following the multilevel scheme we present an error reduction algorithm for extracting glueball masses from monte-carlo simula-
tions of pure SU(3) lattice gauge theory. We look at the two lightest states viz. the 0++ and 2++. Our method involves looking at
correlations between large wilson loops and does not require any smearing of links. The error bars we obtain are at the moment
comparable to those obtained using smeared operators. We also present a comparison of our method with the naive method.

Introduction

Glueball masses are often calculated in
pure Yang-Mills theory:
Advantages are that there is no mixing with mesonic
operators and Glueball states are stable.

Extraction of Glueball masses from cor-
relation functions are extremely difficult
because the correlation functions are dom-
inated by statistical noise.

Strategies

Reduce excited state contamination:
(i) Construct glueball operators from large wilson
loops of dimension r0 × r0 (where r0 = 0.5 fm)
(ii) extract masses from correlators with fit range
between 0.5− 1.0 fm.

Algorithm

We used Cabibbo-Marinary heatbath for SU(3):
3 Over-relaxation steps for every heatbath steps.

The noise reduction scheme we used follows from
the philosophy of Multilevel algorithm.

Particularly this method is useful in theories with
mass gap, where the distant regions of the theory
are uncorrelated as the correlation length is finite.

Our first noise reduction step was to use a semi-
analytic multihit on the SU(3) links with which the
Wilson loops were constructed.

Operators
Pab : Wilson loop in plane ab ∈ {x, y, z}
Scalar : Scalarconn:
A = Re(Pxy + Pxz + Pyz) A− 〈A〉
Tensor :
E1 = Re(Pxz − Pyz) E2 = Re(Pxz + Pyz − 2Pxy)

Multilevel Technique

Slice lattice along temporal direction by
fixing spatial links (A,B & C in fig.) and
compute intermediate expectation values
of Glueball operators by performing sub-
lattice updates.

time

A B C

sub−lattice

Compute expectation values in a nested
manner: Intermediate values are first constructed
by averaging over sub-lattices with boundaries. Full
expectation values − by averging over the interme-
diate values with different boundaries.

Simulation Parameters

Scalar channel
Lattice Size β (r0/a)

sub−lattice
thickness iupd loop size

103 × 18 5.7 2.922(9) 3 30 2× 2

123 × 18 5.8 3.673(5) 3 25 3× 3

163 × 24 5.95 4.898(12) 4 50 5× 5

Tensor channel
Lattice Size β (r0/at)

sub−lattice
thickness iupd loop size

123 × 18 5.8 3.673(5) 3 70 3× 3

123 × 20 5.95 4.898(12) 5 100 5× 5

123 × 20 6.07 6.033(17) 5 100 5× 5

Results

Scalar correlators:

1e-8

1e-7

1e-6

1e-5

1e-4

 2  4  6  8  10  12  14  16

C
(∆

)t

∆t

β=5.8

1e-10

1e-9

1e-8

1e-7

1e-6

 2  4  6  8  10  12  14  16  18

C
(∆

)t

∆t

β=5.95

Tensor Correlators:
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Scalar Effective Masses:
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Tensor Effective Masses:
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Fits

We have fitted the correlators to the form

C(∆t) = A
(

e−m∆t + e−m(T−∆t)
)

(1)

m : glueball mass T : temporal extent of lattice
Fits to data folded about T/2.
Routine : “non-linear model fit” of Mathematica.

Mass and range : Scalar Channel

Lattice β fit-range ma χ2/d.o.f

103 × 18 5.7 5-9 0.952(11) 0.066

123 × 18 5.8 6-9 0.906(8) 0.03

163 × 20 5.95 5-10 0.7510(15) 0.02

Mass and range : Tensor Channel

Lattice β fit-range ma χ2/d.o.f

123 × 18 5.8 4-7 1.585(54) 1.64

123 × 20 5.95 6-10 0.938(17) 0.12

123 × 20 6.07 6-10 0.885(16) 1.6

Algorithmic Gain

Performance comparison : runs for the
same computer time using both methods.

Scalar Channel

Lattice run-time (mins) errornaive
errormultilevel

gain(time)

103 × 18 3850 5.7 32

63 × 18 1000 5.5 30

83 × 24 1100 18 324

Tensor Channel

Lattice run-time (mins) errornaive
errormultilevel

gain(time)

63 × 18 12000 27 729

83 × 30 5775 20 400

103 × 30 15000 - -

We are able to follow the correlator
to temporal separation of about 1 fermi,
which helps to reduce the excited state
contaminations from the extracted glue-
ball masses.

Discussions

Correlation functions between large loops have ad-
vantage that they have much less contamination
from excited states compared to those between el-
ementary plaquettes [2]. Multi-hit and multi-level
schemes allow us to estimate the expectation values
of the large loops with very high precision.

The efficiency of the algorithm depends cru-
cially on choosing the optimal number of sub-lattice
upadtes.

The multilevel algorithm is very efficient for calcu-
lating quantities with very small expectation values.
Operators in the tensor channel have zero expecta-
tion values and are therefore ideal for direct evalu-
ation. For scalar operators we have subtracted the
non-zero VEVs from the operators to get the con-
nected correlators directly.

We observe that this error reduction technique
works quite well at least in pure gauge theories. For
a given computational cost, the improvement in the
signal to noise ratio is several times to even a couple
of orders of magnitude.

To avoid finite volume effects we choose our lattice
such that mL > 9.

We cross-check our data with [3]
Scalar channel

β 5.7 5.8 5.95

ma [3]
0.941(25) 0.909(15)

0.743(12)
0.969(18) 0.945(21)

ma
(

this
work

)

0.952(11) 0.906(8) 0.7510(15)

Tensor channel
β 5.8 5.95 6.07

ma [3] 1.52(5) / 1.57(6) 1.148(19) 0.913(13)

ma
(

this
work

)

1.525(35)/1.585(54) 0.938(17) 0.885(16)
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